Step of Proof: scomb_wf
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
scomb
wf
:
A
,
B
,
C
:Type. S
(
A
B
C
)
(
A
B
)
A
C
latex
by ((Unfold `scomb` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
S
,
t
T
,
x
:
A
.
B
(
x
)
origin